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Communication-Efficient Regret-Optimal Distributed
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Jiandong Liu , Lan Zhang , Fengxiang He , Chi Zhang , Shanyang Jiang ,
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Abstract—Online convex optimization in distributed systems has
shown great promise in collaboratively learning on data streams
with massive learners, such as in collaborative coordination in
robot and IoT networks. When implemented in communication-
constrained networks like robot and IoT networks, two critical
yet distinct objectives in distributed online convex optimization
(DOCO) are minimizing the overall regret and the communica-
tion cost. Achieving both objectives simultaneously is challenging,
especially when the number of learners n and learning time T
are prohibitively large. To address this challenge, we propose
novel algorithms in typical adversarial and stochastic settings.
Our algorithms significantly reduce the communication complex-
ity of the algorithms with the state-of-the-art regret by a factor
of O(n2) and Õ(

√
nT ) in adversarial and stochastic settings,

respectively. We are the first to achieve nearly optimal regret
and communication complexity simultaneously up to polylogarith-
mic factors. We validate our algorithms through experiments on
real-world datasets in classification tasks. Our algorithms with
appropriate parameters can achieve 90% ∼ 99% communication
saving with close accuracy over existing methods in most cases.
The code is available at https://github.com/GGBOND121382/
Communication-Efficient_Regret-Optimal_DOCO.

Index Terms—Communication complexity, distributed online
learning, convex optimization.

I. INTRODUCTION

D ISTRIBUTED online convex optimization (DOCO) [1],
[2], [3], [4] has shown promising performance in collabo-

rative learning on feedback data from clients served sequentially
by massive learners. Besides loss or accuracy, a crucial criterion
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for DOCO algorithms is communication cost, especially in com-
munication-constrained networks like robot and IoT networks.
The energy cost of communications is orders of magnitude
higher than that of local computation in these networks [5],
[6], [7]. In distributed real-time coordination and localization
in robot networks [8], [9], for example, robots collaborate to
minimize the accumulated loss, measured by the difference be-
tween their predictions and the streaming observations of targets.
High communication costs can render the algorithm impractical
since bandwidth or communication power is typically limited
in these applications, leading to quick energy depletion among
resource-constrained robots [10].

Existing works have designed several DOCO algorithms with
low regret loss, a standard metric for the loss of models [11], [12],
[13], or reduced communication complexity [2], [14]. However,
the literature lacks a general theory for DOCO algorithms that
can simultaneously achieve low regret loss and communica-
tion complexity. This work aims to achieve this challenging
goal to make DOCO algorithms practical in communication-
constrained networks. Each learner measures its (pseudo) regret
loss as the difference between the (expected) accumulated loss
incurred by its models and that incurred by the best single model.
The algorithm’s communication complexity is evaluated by the
message complexity [12], [15], which refers to the number of
messages transmitted in the algorithm.

We consider two typical settings in DOCO: adversarial and
stochastic. In the adversarial setting, feedback data can be
arbitrary or adaptive to historical models. This setting covers
applications where feedbacks vary vastly over time, such as in
distributed tracking of moving targets in sensor networks [8]. In
the stochastic setting, each learner’s feedback data follow a fixed
distribution.1 This setting has wide applications in statistical
learning, inference, and coordination in networks [1], [16].

To understand the limitations of DOCO, we establish commu-
nication complexity lower bounds to achieve the minimax regret
loss, which represents the optimal worst-case regret loss for
DOCO algorithms on arbitrary connected learner networks with
arbitrary loss functions. We consider DOCO algorithms with n
learners and learning time T . For adversarial DOCO, we prove
that the lower bound is linear in T . For stochastic DOCO, the
lower bound is nearly linear in n. Generally, the learning time T

1The distributions of each learner’s obtained feedbacks in stochastic DOCO
can be different. We include the results of the i.i.d. stochastic setting where
all feedbacks are sampled from the same distribution in Appendix B in the
supplementary material, available online.
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TABLE I
MINIMAX REGRET BOUNDS, COMMUNICATION COMPLEXITY LOWER BOUNDS

FOR REGRET-OPTIMAL DOCO, CURRENTLY STATE-OF-THE-ART (SOTA)
COMMUNICATION COMPLEXITY FOR DOCO WITH THE STATE-OF-THE-ART

REGRET, AND OUR ALGORITHMS’ COMMUNICATION COMPLEXITY

is significantly greater than the number of learners n. Therefore,
our theory implies that algorithms in stochastic DOCO may
be considerably more communication-efficient than those in
adversarial DOCO.

Based on the above understanding, we propose novel DOCO
algorithms that utilize each communication more effectively. For
the adversarial setting, we design the dual-block BFS-tree-aided
DOCO (DB-TDOCO) algorithm. DB-TDOCO updates models
twice in two fine-tuned blocks each time the learners gather
their gradients in a Breadth-First Search (BFS) tree. Compared
with the traditional distributed mini-batch algorithm [13],
DB-TDOCO enables more frequent and effective model
updates. For the stochastic setting, we devise the distributed
batch-to-online (DB2O) algorithm. DB2O significantly reduces
communication complexity since the learners infrequently
update models. Each updated model is obtained from a parallel
run of a communication-efficient distributed batch optimization
algorithm.

Our proposed algorithms offer notable theoretical advantages.
DB-TDOCO and DB2O achieve nearly optimal communication
complexity and regret bounds for adversarial and stochastic
DOCO, respectively. This is the first time that such results have
been achieved. Our results significantly reduce the state-of-the-
art communication complexity [11], [13] for algorithms with
the currently state-of-the-art regret (cf. Table I). In Section VI,
we show that our algorithms outperform the state-of-the-art
on typical cycle, grid, and clique networks. In Appendix C,
available online, we additionally discuss the communication
complexity on networks with specific diameters and establish
our algorithms’ optimality.

In this paper, we address DOCO within a distributed comput-
ing framework [12], [17], where learners can decide when and
with whom to communicate. Our algorithms involve learners
coordinating to run convergecast and broadcast protocols [17]
for exchanging gradients or models. This communication model
is pertinent in networks like robot and IoT networks [8], [9],
where broadcast and convergecast are applicable across wired
or wireless devices [6], [8], [18], [19]. DOCO algorithms in [13],
[20] are tailored to this paradigm. In contrast, an alternative body
of literature [2], [11], [21] has devised decentralized DOCO
algorithms, following the gossip pattern, for networks lacking
coordination (e.g., unstable wireless networks [12], [22]). In the
gossip framework, learners communicate with neighbors and
locally average their models, representing a specific instance
within our broader communication model.

We assess our algorithms by conducting distributed online lo-
gistic regression on real-world datasets [23], [24]. Results show
that our algorithms achieve substantial communication savings,
up to 95% compared to the state-of-the-art [11], [25], while
maintaining comparable accuracy in the adversarial setting. In
the stochastic setting, communication savings range from 90%
to 99% compared to the state-of-the-art [13], with comparable
accuracy, achieved through appropriate parameter selection.
The code is available at https://github.com/GGBOND121382/
Communication-Efficient_Regret-Optimal_DOCO.

II. RELATED WORK

DOCO has been widely adopted in distributed learning
systems that require real-time AI service [1], [2], [3], [4],
[26]. As many distributed systems operate on communication-
constrained networks, communication-efficient and effective
learning algorithms have become highly attractive [2], [4],
[27]. In adversarial DOCO, the decentralized gossip algo-
rithm [11], [12] currently achieves the state-of-the-art regret of
O(Γn3/2

√
T ), where Γ measures the connectivity of the learner

network, ranging from O(1) to O(n2) for different networks.
The worst-case communication cost of gossip isO(n2 T ). Wan
et al. [2] introduced the decentralized block online conditional
gradient algorithm (D-BOCG), which offers communication
savings over gossip by a factor ofO(

√
T ), with a regret enlarged

by a factor of O(T 1/4). For stochastic DOCO, the distributed
mini-batch algorithm (DMA) [13] achieves the minimax re-
gret with the currently state-of-the-art communication cost of
O(n3/2

√
T ). Although DMA was originally designed for i.i.d.

stochastic data, it naturally works for learners with diverse feed-
back distributions and the same bounds hold. Besides message
complexity, van der Hoeven et al. [28], Acharya et al. [14],
and Tu et al. [4] investigate DOCO with reduced bit complexity
based on gradient quantization, a common technique for com-
pressing message bit-length in learning tasks.

Another area of research focuses on the communication com-
plexity lower bound of DOCO. Wan et al. [29] demonstrate that,
for the dependence on T , the learners need Ω(T ) communica-
tion cost to achieve the minimax regret in adversarial DOCO.
van der Hoeven et al. [28] consider a DOCO problem where
one learner wakes up at each time and serves a client. They
establish the regret lower bounds for this DOCO problem with
different budgets for bit complexity. Wang et al. [25] proved
the Ω(n) communication complexity lower bound of distributed
stochastic bandits to achieve the minimax regret.

Some of our analysis is inspired by online convex optimization
with delayed feedback (OCOD) [20], [30], [31] and batched
bandits [32], [33], [34]. On the one hand, OCOD provides an
algorithmic framework for online learning in scenarios where
feedback data are delayed due to networking or communi-
cation constraints as we encounter in DOCO. On the other
hand, batched bandits investigate the regret of bandit online
optimization where the update times of models are limited.
These works provide insights into the regret analysis of DOCO,
where learners cannot update models frequently due to a lack of
information under communication constraints.
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Fig. 1. An example learner network in DOCO and the service pattern of learner
i ∈ [n] in the network.

Despite great contributions in various aspects, the literature
lacks a comprehensive analysis of the communication complex-
ity lower bounds for regret-optimal DOCO. Furthermore, there
is a lack of algorithms that attain these lower bounds.

III. PROBLEM FORMULATION

We formalize the problem settings for online convex opti-
mization (OCO) and distributed OCO (DOCO).

Online convex optimization: In OCO, an agent acts as a
learner at each time step t ∈ [T ] to optimize an AI model using
streaming data. More specifically, the learner handles incoming
clients based on a model parameter xt ∈ C, where C ⊂ Rd is
the feasible region. The client then provides feedback data ξt to
the learner. The learner derives the loss function ft(·) = f(·; ξt)
from a function f and updates xt+1 based on ft(·).

Distributed OCO: DOCO extends OCO in distributed set-
tings, where n agents collaborate in learning using their data
streams. These n learners communicate in a connected network,
as shown in Fig. 1. At each time t ∈ [T ], each learner i ∈ [n]
serves a client using xi

t ∈ C, with C ⊂ Rd denoting the feasible
region. The client then sends feedback data ξit to learner i,
which may vary for different i due to clients’ unique prefer-
ences or noisy feedbacks (e.g., in distributed tracking based
on noisy observations). The performance of xi

t is evaluated by
the cumulative loss function across all client feedbacks at time
t. More precisely, given a predefined function f(·; ξ) with ξ
being an arbitrary feedback, the loss function is expressed as
ft =

∑n
i=1 f

i
t , where f i

t (·) = f(·; ξit). Learner i can communi-
cate with neighbors and update xi

t+1 using a partial loss function
f i
t = f(·; ξit) and messages from neighbors.

Feedback Settings: In DOCO, two typical feedback set-
tings are considered: adversarial and stochastic. In adversarial
DOCO, the clients at time t select feedback ξit , i ∈ [n], arbitrarily
or adaptively, even based on historical models and messages. In
stochastic DOCO, the feedback ξit is sampled from a distribution
Pi for i ∈ [n].

Network Topology: Similar to existing DOCO algorithms [2],
[11], [13], we consider network topologies as arbitrary undi-
rected connected graphs. Typical topologies in DOCO applica-
tions include cycles, grids, and cliques [2], [11], [22].

Communication Pattern: We focus on DOCO algorithms em-
ploying the standard static communication pattern [1], [2], [13].
In this setup, learners operate within a static communication
pattern, where neighboring learners i and j for i, j ∈ [n] com-
municate at specific time points t, determined by the learner
network and the total learning time T .

Within this pattern, learners can coordinate to exchange
messages such as gradients or models. Two widely adopted

Fig. 2. Convergecast and Broadcast procedures in a BFS tree T of the learner
network [17], where yi represents the vector owned by learner i ∈ [n] and y is
owned by the root learner.

communication protocols in DOCO are convergecast and broad-
cast [13], [20], facilitating the aggregation and distribution
of messages in a BFS tree of the network. The procedures
of convergecast and broadcast are presented in Fig. 2. Both
protocols involve an O(n) communication cost and a delay
proportional to the network’s diameter. Example applications
include distributed real-time localization [8], [9], where robots
can convergecast gradients evaluated on the current localization
model to a single unit for updates, followed by broadcasting the
updated model.

Performance Metrics: The performance of each learner’s
model sequence is measured using the (pseudo) regret loss. In
the adversarial setting, each learner i ∈ [n] aims to minimize the
regret loss [11], [12]

Ri(T ) � ΣT
t=1ft(x

i
t)−min

x∈C
ΣT

t=1ft(x). (1)

In the stochastic setting, let f̄i(x) � Eξ∼Pi
[f(x; ξ)] and f̄(x) �∑n

i=1 f̄i(x). Each learner i seeks to minimize the expected
pseudo regret loss [13]

R̄i(T ) � E

[
ΣT

t=1

[
f̄(xi

t)−min
x∈C

f̄(x)

]]
. (2)

For instance, in distributed real-time localization, the loss func-
tion quantifies the sum of distances between a prediction of
the localization model and all robots’ noisy observations. Each
robot aims to minimize the regret loss to reduce its cumulative
localization error. In this paper, we focus on algorithms with
the minimax regret, i.e., the optimal regret loss achieved by
DOCO algorithms under worst-case networks and feedbacks (or
feedback distributions in the stochastic setting).

Another performance metric of a DOCO algorithm is its
communication complexity. In this paper, the communication
complexity is quantified by the number of transmitted messages,
i.e., the message complexity [12], [17]. In DOCO algorithms, a
message typically represents a gradient or model parameter.

Conditions on Loss Functions: This paper considers standard
loss functions that are Lipschitz, convex, smooth, and bounded.Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 22,2024 at 14:23:41 UTC from IEEE Xplore.  Restrictions apply. 
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The feasible region C for the models is assumed to be convex,
compact, and adhere to a fatness condition.

Definition 1 (Convexity): A function f is convex within a
convex compact set C ⊂ Rd if, for all x, y ∈ C,

f(y)− f(x) ≥ 〈∇f(x), y − x〉.

Definition 2 (Lipschitz): A function f isL-Lipschitz for some
L > 0 in a convex compact set C if, for all x, y ∈ C,

|f(x)− f(y)| ≤ L ‖x− y‖ .

Here, ‖ · ‖ denotes the Euclidean norm.
Definition 3 (Smoothness): A function f is LG-smooth for

some LG > 0 if, for all x, y ∈ C,

‖∇f(x)−∇f(y)‖ ≤ LG ‖x− y‖ .

Definition 4 (Bounded function and fat set [35]): A function
f is bounded if |f(x)| ≤M for all x ∈ C, where M > 0. A set
C is fat if it contains an �∞-ball of radius Ω(poly( 1d )).

The assumptions of Lipschitz, convexity, smoothness, and
boundedness on the loss functions, and the convexity and
compactness assumptions on the feasible region C, are widely
adopted in the DOCO literature [1], [2], [12], [13]. The fatness
assumption is essential for cutting-plane-based algorithms [35],
[36], ensuring sufficient interior space for search. By the analysis
in [35], this assumption holds for sets of the form {x ∈ Rd :
hi(x) ≤ 0, i ∈ [k]}, where each hi(·) is Lipschitz and smooth
for i ∈ [k]. However, this assumption does not hold for con-
straints containing equalities, e.g., a surface in Rd. We can adapt
our analysis and algorithms to these regions by operating on the
low-dimensional manifold induced by these equalities, which
we leave for future work.

Many real-world loss functions satisfy Definitions 1–4. Lo-
gistic loss functions [20] and smoothed hinge loss functions [37]
with bounded regions and samples, widely adopted in classifi-
cation tasks [2], [13], [20], [37], and ridge regression functions
utilizing bounded regions and samples [20] popular in regression
tasks [1], [20], [38], align with these definitions. A specific
instance of loss functions satisfying Definitions 1–4 is the linear
function with a constant dimension d > 1

f(x) = 〈x, z〉 for some z ∈ [0, 1]d,

C = {x ∈ Rd
≥0|1 ≤ ‖x‖1 ≤ 2}. (3)

In adversarial DOCO, we assume that f i
t for i ∈ [n] and t ∈

[T ] satisfy Definitions 1–4 with common parameters L, LG,
and M . In stochastic DOCO, we assume that f(x; ξ) for all
possible ξ ∼ Pi, i ∈ [n], satisfies Definitions 1–4. Specifically,
in stochastic DOCO, we also consider broader non-Lipschitz
functions satisfying the following milder condition.

Definition 5 (Bounded gradient variance and expected initial-
ization risk [13]): Functions f(x; ξ), ξ ∼ Pi for i ∈ [n], have
bounded gradient variance σ2 > 0 and expected initialization
risk R > 0 in a compact convex C if, for x ∈ C, i ∈ [n],{

Eξ∼Pi
‖∇f(x; ξ)−∇f̄i(x)‖2 ≤ σ2

f̄i(x̂)− f̄i(x
∗) ≤ R

,

where f̄i(x) = Eξ∼Pi
[f(x; ξ)], x∗ � argminx∈C Σ

n
i=1f̄i(x),

and x̂ � argminx∈C ‖x‖.

The condition above is a relaxed version of the Lipschitz
condition as f(x; ξ), ξ ∼ Pi for i ∈ [n] have gradient variance
L2 and expected initialization risk L‖C‖ if it is L-Lipschitz,
where ‖C‖ � maxx,y∈C ‖x− y‖. This condition can accommo-
date broader loss functions like logistic and ridge regression loss
functions with noisy gradients [4], [39].

IV. COMMUNICATION COMPLEXITY LOWER BOUNDS

To determine the limits of DOCO, we establish lower bounds
on the communication complexity for regret-optimal algorithms.
Let r denote the communication budget, i.e., the maximum
number of messages that can be transmitted by the learners. We
construct hard instances for DOCO where any algorithm will
experience suboptimal regret when r falls below a lower bound.
In our analysis, we make no assumptions on the bit-lengths of the
messages. Consequently, our lower bounds remain valid even
when the bit-lengths of the messages are unbounded. This is
because we utilize information-theoretic analysis on feedback
information. The learners must acquire information related to
feedbacks at specific times and promptly update models to
achieve the minimax regret. We present brief outlines of the
proofs for our theoretical results in this section and defer the full
proofs to Appendices D and E in the supplementary material.

A. Communication Complexity for Adversarial DOCO

We begin by examining the communication complexity of
adversarial DOCO. We construct a hard instance where the regret
loss is Ω(n3/2T/

√
r) for communication budgets r that are not

sufficiently large, as presented in Theorem 1.
Theorem 1: Consider adversarial DOCO with linear loss

functions (cf. (3)) and static communication patterns. There
exists a learner network and functions {f i

t}t∈[T ],i∈[n] such that

R1(T ) = Ω
(
n3/2 max{

√
T , T/

√
r}
)
, (4)

where n is the number of learners, T is the learning time, and r
is the communication budget.

As a corollary of Theorem 1, we need r = Ω(T ) to achieve
the minimax regret O(n3/2

√
T ).

Corollary 1: Consider adversarial DOCO with loss functions
satisfying Definitions 1–4 and static communication patterns.
The communication complexity to achieve the minimax regret
O(n3/2

√
T ) is Ω(T ) with respect to n and T .

The theory demonstrates that the necessary communication
cost in adversarial DOCO increases at a minimum rate of
linearly with respect to the learning time T . This result is
substantiated by constructing a specific problem instance in
which any algorithm will experience suboptimal regret if the
communication budget is inadequate. On one hand, the Ω(T )
lower bound is disheartening as it indicates that the learners
must communicate frequently during the course of the algo-
rithm. On the other hand, the bound is encouraging as it is
independent of the number of learners n. Our bound sug-
gests that the currently state-of-the-art communication com-
plexity of O(n2 T ) (cf. Table I) may be suboptimal with regard
to n.

Proof sketch of Theorem 1.Authorized licensed use limited to: HEFEI UNIVERSITY OF TECHNOLOGY. Downloaded on November 22,2024 at 14:23:41 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 3. Claw-shaped network. n′ = �n/2�.

1) Constructing the network: We construct the learner network
as a claw-shaped one in Fig. 3. In this network, the transmission
of each message from a learner i > n′ to learner 1 requires
Ω(n) timeslots and communication budget. By the analysis in
OCO with delayed feedback [30], the Ω(n) delay can magnify
learner 1’s regret by an Ω(

√
n) factor. This attribute is critical

for establishing the Ω(n3/2
√
T ) regret lower bound when the

communication budget r is sufficiently large.
2) Constructing loss functions: Let tk + 1 be the first time

learner 1 receives information from learner i > n′ sent at time
tk−1 < t ≤ tk, and m be the number of such tk. Let t0 = 0
and tm+1 = T . We construct linear loss functions as in (3). For
learner i > n′, we sample ẑk uniform in {0, 1}d for k ∈ [m+ 1],
and set f i

t (x) = 〈x, ẑk〉 for tk−1 < t ≤ tk. The constructed loss
for learner i ≤ n′ is zero. Learner 1 then incurs high regret loss
since its models are independent of the functions of learners
n′ + 1 to n.

3) Lower bounding the regret: We establish that

E[R1(T )] = Ω(nT/
√
m),

based on our loss functions. In the claw-shaped network, m =
O(min(T/n, r/n)). Theorem 1 can then be deduced.

Comparison with existing works: Our lower bound on com-
munication complexity improves upon the result in [29], which
proves a lower bound of Ω(T ) based on a hard instance sat-
isfying Definitions 1–4. Notably, their work does not con-
sider the dependence on the number of learners n, and hence
does not reveal the suboptimality of the state-of-the-art algo-
rithm’s communication complexity of O(n2 T ) [11]. While
Wan et al. [29] employ similar loss functions to ours (cf.
(3)), which rely on specific communication time points tk for
k ∈ [m], they do not consider the influence of transmission
delays and network topologies in their construction. In contrast,
we obtain tighter bounds by selecting tk based on the com-
munication budget and transmission delays in a sophisticated
network.

B. Communication Complexity for Stochastic DOCO

For the stochastic setting, we prove that a hard instance exists
where the regret loss is ω(

√
nT ) for a low communication

budget r. We summarize the result in Theorem 2.
Theorem 2: Consider stochastic DOCO with linear loss func-

tions (cf. (3)) and static communication patterns. There exists
a learner network and loss functions f(x; ξit) for i ∈ [n] and

t ∈ [T ], where ξit ∼ Pi for some distribution Pi, such that

R̄1(T ) = Ω
(
max

{
min

{
n2, nT

}
, (nT )

1

2−2−2r/n
})

, (5)

where n is the number of learners, T is the learning time, and r
is the communication budget.

Via similar arithmetic computations as in batched ban-
dits [32], we need r = Ω(n ln lnT ) to make R̄1(T ) in (5) equal
to O(

√
nT ), the minimax regret, when T � n.

Corollary 2: Consider stochastic DOCO with loss functions
satisfying Definitions 1–4 and static communication patterns.
The communication complexity to achieve the minimax regret
O(
√
nT ) is Ω(n ln lnT ) with respect to n and T .

The theory shows that for stochastic DOCO, the lower bound
on communication complexity required to attain the minimax
regret is Ω̃(n), which is almost insensitive toT . We establish this
bound with an instance where any algorithm fails to achieve the
optimal regret if their communication budget is below our lower
bound. Initially, the tightness of this bound may appear dubious
as the regret seems to rise swiftly in T if the communication
cost is nearly constant in T . Nevertheless, once this bound is
reached, it is highly advantageous as the learning time tends to
be lengthy in real-world applications [1], [13].

Proof sketch of Theorem 2.
1) Constructing the network: Similarly, as in adversarial

DOCO, we take the claw-shaped learner network in Fig. 3.
2) Constructing loss functions: We sample � uniformly from

[d]. The loss functions are as in (3), i.e., f(x; ξit) = 〈x, ξit〉. For
learner i ≤ n′, ξit is an all-zero vector. For learner i > n′, the �th
coordinate of ξit is drawn from the Bernoulli distribution with
mean 1

2 − ε, and the other coordinates are uniform in {0, 1}. We
tune the parameter ε to maximize learner 1’s regret.

3) Lower bounding the regret: Let tk, k ∈ [m] be the time
points we defined in the proof sketch of Theorem 1. By optimally
tuning the parameter ε in the loss, we derive that:

E�[R̄1(T )] = Ω(nmin{n, T}+ n
1

2−2−m T
1

2−2−m ).

It holds that m ≤ r/n′ ≤ 2r/n in the claw-shaped network.
Theorem 2 then follows.

Comparison with existing works: To our best knowledge, this
is the first work that analyzes the communication complexity for
general DOCO in the stochastic setting.

V. COMMUNICATION-EFFICIENT DOCO ALGORITHM

Building on the insights from our lower bound analysis, we
design two novel DOCO algorithms: dual-block BFS-tree-aided
DOCO (DB-TDOCO) and distributed batch-to-online (DB2O).
These algorithms optimize communication resource utilization,
achieving optimal regret and communication complexity in
the number of learners n and learning time T , as outlined in
Section IV, within polylogarithmic factors. Proof sketches of
these results are presented in this section, with details deferred
to Appendices G and H in the supplementary material.

In Table II, we compare the performance of our algorithms
with state-of-the-art [2], [11], [12], [13]. Our DB-TDOCO and
DB2Oa algorithms notably reduce communication complexity
while maintaining comparable or lower regret, under the same
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TABLE II
REGRET BOUNDS, COMMUNICATION COMPLEXITY, AND ASSUMPTIONS ON LOSS FUNCTION FOR DOCO ALGORITHMS FOR THE DEPENDENCE OF THE NUMBER OF

LEARNERS n AND LEARNING TIME T WHEN T � n. GOSSIP [11], [12] AND D-BOCG [2] RESPECTIVELY ACHIEVE STATE-OF-THE-ART REGRET AND

COMMUNICATION COMPLEXITY IN ADVERSARIAL DOCO

assumptions as gossip and DMA, respectively, which achieve
top-tier regret for adversarial and stochastic DOCO. They re-
duce the communication cost of gossip and DMA by O(n2)
and Õ((nT )1/4) factors, respectively. Furthermore, our DB2Oc

reduces the communication cost of DMA by an Õ(
√
nT ) factor,

assuming bounded loss functions and a fat feasible region (cf.
Definition 4) while relaxing the smoothness assumption (cf.
Definition 3). Notably, our algorithms handle broader functions
with milder assumptions compared to those in Section IV.
Specifically, DB-TDOCO accommodates convex and Lipschitz
loss functions, including non-smooth and unbounded ones like
hinge loss functions with bounded regions and samples in
SVM-based classifications [11], even with additive noise. Mean-
while, DB2Oc is suitable for convex and bounded functions
with bounded gradient variance, such as hinge loss with noisy
gradients [39]. Finally, DB-TDOCO and DB2Oa apply to non-
fat feasible regions, such as the constrained simplex in linear
programming [42], [43]. Our bounds in Section IV remain valid
for these milder assumptions as we construct hard instances
under stricter conditions that inherently fulfill the milder ones.

A. Algorithm Design for the Adversarial Setting

Our adversarial DOCO algorithm is inspired by online con-
vex optimization with delayed feedback (OCOD) [30]. OCOD
research shows that a feedback delay of Θ(n) time points leads
to regret loss increasing by an O(√n) factor. This is due to
difficulties in the model catching up with variations in other
learners’ collected adversarial feedbacks in time. In DOCO,
through convergecast (cf. Fig. 2), learners can aggregate their
gradients at each time to a single learner, requiring O(n) time
points and communication cost. Then, this learner updates and
broadcasts models, achieving a minimax regret ofO(n3/2

√
T ).

Nonetheless, this approach incurs a communication cost of
O(nT ). To minimize communication cost to O(T ), learners
communicate gradients in blocks, with the block size finely
tuned to maintain the minimax regret.

Building on the aforementioned insight, we propose the dual-
block BFS-tree-aided DOCO (DB-TDOCO) algorithm, which

Fig. 4. Model updates in DB-TDOCO. f̂2k−2 and f̂2k−1 represent block loss
functions within blocks I2k−2 � [tk−1 − 2μ+ 1, tk−1] and I2k−1 � [tk−1 +

1, tk − 2μ], respectively. Here, f̂� � 1
nIΣs∈I�fs for each �, where I is the

largest block size. μ denotes the height of the learner network’s BFS tree. ΠC
projects models onto the feasible region C.

achieves improved performance by updating models in finely
tuned blocks. We divide the learning time into m+ 1 intervals
[tk−1 + 1, tk], k ∈ [m+ 1], where t0 = 0 and tm+1 = T . Each
interval [tk−1 + 1, tk] is further divided into two blocks: I2k−1 �
[tk−1 + 1, tk − 2μ] and I2k � [tk − 2μ+ 1, tk], where μ de-
notes the height of a Breadth-First Search (BFS) tree of the
learner network. Within each interval [tk−1 + 1, tk], learners
update models twice in blocks I2k−1 and I2k based on gradients
of previous blocks communicated in the BFS tree. The model
update process of DB-TDOCO is illustrated in Fig. 4, and the
detailed algorithm is presented in Algorithm 1.

The dual-block model updates in DB-TDOCO enable all
loss functions to contribute to updating models. The traditional
mini-batch updates [13] cannot achieve this target, which ne-
glects feedbacks when learners convergecast/broadcast mes-
sages (i.e., during [tk − 2μ, tk] for k ∈ [m]). DB-TDOCO
achieves the minimax regret. Besides, we make DB-TDOCO
communication-efficient by tuning the number of intervals
m+ 1 optimally.

Theoretical advantages of DB-TDOCO.
We study the regret and communication complexity of DB-

TDOCO with arbitrary m and {tk}k∈[m] in Theorem 3.
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Algorithm 1: Dual-Block BFS-Tree-Aided DOCO (DB-
TDOCO).

1: Input: BFS tree T , number of intervals m+ 1, and time
sequence 0 = t0 < t1 < . . . < tm+1 = T

2: Initialization:
3: Each learner sets, for k ∈ [m+ 1],{

I2k−1 ← [tk−1 + 1, tk − 2μ]

I2k ← [tk − 2μ+ 1, tk],

where μ is the height of T
4: Each learner sets I ← max�∈[2m+2] |I�|
5: Each learner i initializes:

xi
t = x̂0 = x̂1 = x̂2 ← argmin

x∈C
‖x‖ for t ∈ I1 ∪ I2

6: for k = 1 to m do
7: Convergecast:
8: At time tk − 2μ, the learners run:{

Convergecast({∇f̂ i
2k−2(x̂2k−2)}i∈[n], T )

Convergecast({∇f̂ i
2k−1(x̂2k−1)}i∈[n], T ),

where f̂ i
� � 1

nIΣs∈I�f
i
s for each � and i

9: At time tk − μ, the root learner in T obtains:{
∇f̂2k−2(x̂2k−2) = Σn

i=1∇f̂ i
2k−2(x̂2k−2)

∇f̂2k−1(x̂2k−1) = Σn
i=1∇f̂ i

2k−1(x̂2k−1)

10: Global Update:
11: At time tk − μ, the root learner in T updates:{

x̂2k+1 ← ΠC(x̂2k−2 − η∇f̂2k−2(x̂2k−2))

x̂2k+2 ← ΠC(x̂2k−1 − η∇f̂2k−1(x̂2k−1)),
(6)

where ΠC(x)� argminy∈C ‖y−x‖, and η=Θ(1/
√
m)

12: Broadcast:
13: At time tk − μ, the learners run:{

Broadcast(x̂2k+1, T )
Broadcast(x̂2k+2, T )

14: Local Update:
15: At time tk + 1, each learner i updates:{

xi
t ← x̂2k+1 for t ∈ I2k+1

xi
t ← x̂2k+2 for t ∈ I2k+2.

16: end for

Theorem 3: Let the loss functions {f i
t}t∈[T ],i∈[n] satisfy Def-

initions 1 and 2, and the time points {tk}k∈[m] satisfy

tk − tk−1 > 2μ+ 1 for k ∈ [m+ 1].

DB-TDOCO features O(nI√m) regret with O(mn) commu-
nication cost, where 2m+ 2 is the number of blocks and I is
the largest length of blocks {Ik}k∈[2m+2].

Leveraging the results from Theorem 3, DB-TDOCO can
attain the optimal regret and communication complexity, as

established in Corollary 2, by selecting a specific value of m
and {tk}k∈[m]. We provide the details in Corollary 3.

Corollary 3: Let the loss functions {f i
t}t∈[T ],i∈[n] satisfy

Definitions 1 and 2. In DB-TDOCO, by choosing

m = �T/(2n)� − 1 and tk = 2nk for k ∈ [m], (7)

in Algorithm 1, the regret bound is Ri = O(n3/2
√
T ) for i ∈

[n], and the communication cost is O(T ).
Furthermore, we discover that DB-TDOCO can surpass the

minimax regretO(n3/2
√
T ) by selecting a different value of m

and {tk}k∈[m] for networks with specific diameters D.
Corollary 4: Let the loss functions {f i

t}t∈[T ],i∈[n] satisfy
Definition 1 and 2. In DB-TDOCO, by choosing

m = �T/(3μ)� − 1 and tk = 3μk for k ∈ [m], (8)

we obtain the regretRi = O(n
√
DT ) for i ∈ [n], and the com-

munication cost is O(nT/D), where μ is the BFS tree’s height
and D is the network’s diameter.

As shown in Corollary 4, DB-TDOCO with parameters speci-
fied in (8) reduces the minimax regret by a factor ofO(

√
n/D),

where the diameter D varies from 1 to n− 1. Furthermore,
we demonstrate in Appendix C, available online, in the sup-
plementary material that the regret and communication cost of
DB-TDOCO in the diameter-dependent setting is optimal.

Proof sketch of Theorem 3.
In DB-TDOCO, for each iteration �, the root learner updates

x̂�+1 = ΠC(x̂�−2 − η∇f̂�−2(x̂�−2)),

where η = O(1/√m) and f̂� � 1
nIΣs∈I�fs. In other words, the

next model x̂�+1 is updated using the delayed loss function f̂�−2
and model x̂�−2 via gradient descent. By applying the regret
analysis of OCOD [30], [44], we can establish that

Σ2m+2
k=1 f̂k(xk)−min

x∈C
Σ2m+2

k=1 f̂k(x) = O(
√
m).

By multiplying the equation above by nI, we can obtain the
regret bound Ri for i ∈ [n]. As for the communication cost,
during each interval [tk−1 + 1, tk] for k ∈ [m], the learners
convergecast two averaged gradients by recursively aggregating
their children’s gradients and broadcast two models. Each run
of convergecast or broadcast takes n− 1 communication cost.
Hence, the communication cost of DB-TDOCO is O(mn).

Comparison with existing works: By Table II, gossip [11],
[12] and D-BOCG [2] respectively achieve state-of-the-art regret
and communication complexity for adversarial DOCO with con-
vex and Lipschitz loss functions. Under the same assumptions,
DB-TDOCO with parameters in (7) significantly reduces both
the worst-case regret and communication cost of gossip by an
O(n2) factor. With parameters in (8), DB-TDOCO minimizes
regret in networks with small diameters D, while incurring a
communication cost of O(nT/D). Given that gossip incurs a
communication cost of Ω(nT ) [12], DB-TDOCO reduces this
cost by an Ω(D) factor. Compared to D-BOCG, which boasts
the state-of-the-art communication cost ranging from Ω(n

√
T )

to O(n2
√
T ), DB-TDOCO reduces its worst-case regret by an

O(n2 T 1/4) factor. However, this improvement comes at the
expense of an increased communication cost by a factor of
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O(
√
T/n) and O(

√
T/D) when employing parameters in (7)

and (8), respectively.
DB-TDOCO under milder assumptions: DB-TDOCO can

broaden its scope to accommodate milder assumptions, such as
unknown Lipschitz constants and unbounded feasible regions
Rd, by replacing the model update rule in (6) with gradient
methods from [45], [46]. These gradient algorithms yield equiv-
alent regret bounds to gradient descent concerningn and T , with
an additional dependence on the norm of the optimal model.
Leveraging these gradient algorithms allows DB-TDOCO to
achieve comparable regret bounds and communication complex-
ity in DOCO scenarios with unbounded feasible regions Rd and
gradient norms.

The analysis above assumes the BFS tree is pre-built. If the
tree is not built beforehand, it can be constructed with O(n2)
communication cost in O(n) timeslots (e.g., using the mega-
merger and flooding algorithms [47]). In this case, the learners
incur O(n2) extra regret by choosing models as the initialized
one before building the tree. The extra communication cost and
regret are negligible in DB-TDOCO when T � n.

B. Algorithm Design for the Stochastic Setting

In the stochastic setting, the well-known online-to-batch con-
version scheme [48] shows that online algorithms converge
favorably in batch optimization. We extend this concept in the
opposite direction, utilizing batch optimization algorithms to
develop DOCO algorithms. While a batch algorithm may not
ensure low loss for all constituent models, it does yield a final
model with low loss, suitable for DOCO tasks. Hence, we require
learners to update local models as the output of a batch algorithm
runs before the current time point. The key insight behind achiev-
ing low regret and communication cost stems from the rapid
convergence of the batch algorithm’s output to the optimal model
as the feedback data increase. Consequently, frequent updates of
learners’ local models are unnecessary. Instead, we only require
learners to train a small number of communication-efficient
batch optimization algorithms, which output models at carefully
selected time points.

Based on this intuition, we propose the distributed batch-
to-online (DB2O) algorithm, which utilizes infrequent but ef-
fective model updates to achieve reduced regret and communi-
cation cost. Specifically, we leverage a general framework for
communication-efficient distributed batch convex optimization
(DBCO), namely BFS-tree-aided DBCO (T-DBCO). The learn-
ers execute m instances of T-DBCO, with each instance paral-
lelly training models based on convergecast gradients and loss
values. At time tk, the kth instance returns a model xk,νk+1 for
k ∈ [m], and each learner i then locally updates xi

t = xk,νk+1.
We provide the model update chart of DB2O in Fig. 5 and
detailed algorithmic descriptions in Algorithm 2.

We implement DB2O by employing communication-efficient
T-DBCO updates with a limited number of T-DBCO instances
m. Specifically, by adopting the cutting-plane [35] or AGD [41]
update rule A, DB2O achieves optimal regret, with polyloga-
rithmic factors in n and T , where m = Õ(1). Moreover, DB2O,

Fig. 5. Model updates in DB2O. The kth T-DBCO instance yields xk,νk+1 as
learners’ local models from time tk + 1 to tk+1, where k ∈ [m]. A represents
the model update rule in T-DBCO. pk,� and f̂k,� denote the parameters ofA and
the average loss functions, respectively, within the �th mini-batch ([tk,�−1 +
1, tk,� − 2μ]) of the kth T-DBCO instance.

when integrated with cutting-plane or AGD, significantly re-
duces the state-of-the-art communication cost [13] by approxi-
mately a factor of Õ((nT )α) for α > 0.

Theoretical advantages of DB2O.
We analyze the regret and communication cost of DB2O with

cutting-plane and AGD in Theorems 4 and 5. The details of
update and initialization rules of cutting-plane and AGD are
deferred to Appendix A in the supplementary material, available
online.

Theorem 4: Let the loss functions f(x; ξ), ξ ∼ Pi for i ∈ [n]
satisfy Definitions 1, 4, and 5. We choose update and initial-
ization rules A and Ainit as in cutting-plane, the number of
T-DBCO instances m = 1 + �ln lnT �, the time sequence as

{
t1 = �(2μ+ 2)C1d ln(nT )�
tk = t1 +

⌈
(T − t1)

2−2−k+2

2−2−m+1
⌉
, for 2 ≤ k ≤ m,

and the batch size as

bk =
⌊
tk/ (C1 d ln (dn/εk))

⌋
for k ∈ [m],

where μ is the BFS tree’s height, C1 > 0 is a constant, and εk =

d3/2 ln (ntk)
√

n
tk−(2μ+1)C1 d ln(ntk)

. Then, the regret bound of

DB2O is Õ(dn2 + d3/2
√
nT ), and the communication cost is

Õ(dn), wheren is the number of learners,T is the learning time,
and d is the model dimension.

Theorem 5: Let the loss functions f(x; ξ), ξ ∼ Pi for i ∈ [n]
satisfy Definitions 1, 3, and 5. We choose update and initial-
ization rules A and Ainit as in AGD, the number of T-DBCO
instances m = �ln lnn�+ �ln lnT �, the time sequence as

⎧⎨
⎩tk = 2μ+ n+

⌊
n
1+ 2

3 ·
2k−1
2m
′ −1

⌋
, for k ≤ m′

tk = tm′ +
⌈
(T − tm′)

2−2−k+1+m′

2−2−m+m′
⌉
, for k > m′,
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Algorithm 2: Distributed Batch-to-Online (DB2O).
1: Input: Update rule A, initialization rule Ainit for A,

BFS tree T , number of T-DBCO instances m, time
sequence 0 = t0 < . . . < tm+1 = T , and batch sizes
{bk}k∈[m]

� Details of A and Ainit are deferred to Appendix A,
available online

2: Initialization:
3: Each learner i initializes:

xi
t = x̂1 ← argmin

x∈C
‖x‖ for t ∈ [1, t1]

4: Each learner sets μ as the height of T
5: Each learner sets, for k ∈ [m],⎧⎨

⎩
xk,1 ← x̂1

tk,� ← � · bk for � ≤ νk = �tk/bk�
pk,1 ← Ainit(νk)

6: for each k in [m] do
7: T-DBCO Update:
8: for � = 1 to νk do
9: Convergecast:

10: At time tk,� − 2μ, the learners run:{
Convergecast({f̂ i

k,�(xk,�)}i∈[n], T )
Convergecast({∇f̂ i

k,�(xk,�)}i∈[n], T ),

where f̂ i
k,� =

1
bk−2μΣ

tk,�−2μ
s=tk,�−1+1f

i
s

11: At time tk,� − μ, the root learner obtains:{
f̂k,�(xk,�) = Σn

i=1f̂
i
k,�(xk,�)

∇f̂k,�(xk,�) = Σn
i=1∇f̂ i

k,�(xk,�)

12: Global Update:
13: At time tk,� − μ, the root learner in T updates:

xk,�+1, pk,�+1 ←

A(xk,�, f̂k,�(xk,�),∇f̂k,�(xk,�), pk,�).

14: Broadcast:
15: At time tk,� − μ, the learners run:

Broadcast(xk,�+1, T )
16: end for
17: Local Update:
18: At time tk + 1, each learner i updates:

xi
t ← xk,νk+1 for t ∈ [tk + 1, tk+1]

19: end for

and the batch sizes as

⎧⎨
⎩
bk = 2μ+ n, for k ≤ m′

bk = max

{
2μ+ n,

⌊
tk

C2n1/4t
1/4
k +1

⌋}
, for k > m′,

where μ is the BFS tree’s height, m′ = �ln lnn�, and C2 > 0 is
a constant. Then, the regret bound of DB2O is Õ(n2 +

√
nT ),

and the communication cost is Õ(n5/3 + n5/4T 1/4).
DB2O facilitates learners in achieving nearly optimal regret

by parallelizing a few instances of communication-efficient T-
DBCO. By Theorem 4, DB2O with cutting-plane almost attains
the optimal regret and communication complexity in n and T
(the primary focus of this paper) established in Corollary 2 when
T � n. Notably, it stands as the first algorithm to achieve almost
optimal regret and communication complexity that is nearly
independent of T . However, its regret and communication com-
plexity do additionally depend on the model dimension d, which
proves to be suboptimal when compared to the state-of-the-art
DMA algorithm with no dependence on d [13], cf. Table I. In
contrast, DB2O with AGD nearly achieves optimal regret in n,
T , and d. While its communication cost is not optimal in n and
T , it remains independent of d and outperforms the state-of-
the-art [13], offering a potential advantage in high-dimensional
DOCO tasks.

Proof sketch of Theorems 4 and 5.
For DB2O with cutting-plane, denote the risk of model

x ∈ C as Risk(x) � f̄(x)−minx∗∈C f̄(x
∗), where f̄(x) =

Σn
i=1Eξ∼Pi

[f(x; ξ)]. By (2), we obtain, for j ∈ [n]

R̄j(T )=E [Risk(x̂1)t1]+E [Σm
k=1Risk(xk,νk+1)(tk+1−tk)]

= O(nt1) + E [Σm
k=1Risk(xk,νk+1)(tk+1 − tk)] , (9)

where the second equality follows from Risk(x̂1) = O(n) ac-
cording to Definition 5. For cutting-plane, bk specified in The-
orem 4 ensures that

E [Risk(xk,νk+1)] ≤ O(1) · εk.
Plugging the values of tk and the risk of xk,νk+1 for k ∈ [m]

into (9), we obtain that R̄j(T ) = Õ(dn2 + d3/2
√
nT ).

Each run of T-DBCO requires O(tk/bk) convergecast and
broadcast operations and the communication cost of converge-
cast/broadcast is O(n). The communication cost for each run
of T-DBCO in Algorithm 2 equals O(ntk/bk) = Õ(dn) and
Algorithm 2 runs O(ln lnT ) instances of T-DBCO. Thus the
overall communication cost is Õ(dn).

In DB2O with AGD, bk specified in Theorem 5 ensures that⎧⎪⎨
⎪⎩

E [Risk(xk,νk+1)]=O
(

n3

(tk−2μ−n)2
)

if tk≤2μ+n+n5/3

E [Risk(xk,νk+1)] = O
(√

n
tk−2μ−n

)
, otherwise.

The rest of the proof is similar to that for cutting-plane.
Comparison with existing works: DB2O significantly reduces

the communication complexity of the state-of-the-art DMA
algorithm [13] concerning n and T . First, DB2O with cutting-
plane reduces DMA’s communication complexity by a factor of
Õ(
√
nT/d) while maintaining minimax regret within polyloga-

rithmic factors in n and T and factors in d3/2. This advantage is
particularly evident in scenarios with numerous learners and pro-
longed learning times. Compared to DMA, DB2O with cutting-
plane requires bounded loss functions and a fat feasible region,
relaxing the smoothness assumption (cf. Table II). Second,
DB2O with AGD nearly achieves minimax regret and reduces
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TABLE III
REGRET BOUNDS AND COMMUNICATION COMPLEXITY FOR DOCO ALGORITHMS ON n-NODE CYCLE, GRID, AND CLIQUE NETWORKS FOR THE DEPENDENCE OF

THE NUMBER OF LEARNERS n AND LEARNING TIME T WHEN T � n

Fig. 6. Illustration of some typical network topologies.

DMA’s communication complexity by a factor of Õ((nT )1/4)
for loss functions under the same assumptions. This reduction is
dimension-free, making DB2O with AGD more advantageous
over DMA in high-dimensional tasks compared to DB2O with
cutting-plane.

DB2O under milder assumptions: For DB2O with cutting-
plane, the strict requirements on loss functions outlined in Def-
initions 1, 4, and 5 can be relaxed without compromising effec-
tiveness. This relaxation involves ensuring that the expected loss
function f̄(x) = Σn

i=1Eξ∼Pi
[f(x; ξ)] adheres to Definitions 1

and 4, while bounding the variances of both the loss values
and gradients of f(x; ξ), ξ ∼ Pi for i ∈ [n] [35]. Consequently,
the regret and communication complexity of the corresponding
DB2O implementation remain unaffected. Similarly, for DB2O
with AGD, the prerequisites on feasible regions to be compact
can be relaxed, enabling it to operate in scenarios with an
unbounded feasible region Rd [41]. This relaxation aligns with
the analysis in Theorem 5 concerning n and T , allowing DB2O
with AGD to maintain the same regret and communication
complexity under these relaxed conditions.

Similar to the adversarial setting, if the BFS tree is not built
beforehand, it will incur O(n2) extra communication cost and
regret loss when building the tree and using the initialized model.
In this case, the communication cost of DB2O with cutting-plane
becomes Õ(n2 + dn), which is still the lowest in terms of n and
T in the literature.

VI. ALGORITHM ANALYSIS ON TYPICAL NETWORKS

In this section, we compare the regret loss and communication
cost of our algorithms with the state-of-the-art [2], [11], [12],
[13] on typical cycle, grid, and clique networks. We present the
networks in Fig. 6 and summarize the comparisons of regret

TABLE IV
CONNECTIVITY PARAMETER Γ FOR GOSSIP [11], [12] IN ADVERSARIAL DOCO

IN n-NODE CYCLE, GRID, AND CLIQUE NETWORKS

bounds and communication complexity in Table III. It shows
that our proposed algorithms achieve reduced communication
cost in n and T without compromising regret on these networks
compared to algorithms with state-of-the-art regret [11], [12],
[13].

A. DOCO for the Adversarial Setting

In the adversarial setting, we assess the performance of
DB-TDOCO against gossip [11], [12] and D-BOCG [2],
which respectively achieve the state-of-the-art regret and
communication complexity. The impact of network topologies
differs between gossip (D-BOCG) and DB-TDOCO. According
to the analysis in [2], [11], [22], gossip and D-BOCG’s regret
and communication complexity are influenced by network con-
nectivity, measured by the spectral gap of the network’s gossip
matrix [40] and the number of edges. However, DB-TDOCO’s
performance remains unaffected by the network topology when
parameters in (7) are chosen. Conversely, with parameters in
(8), DB-TDOCO’s performance is governed by the network’s
diameter.

The regret bound of gossip scales as O(Γn3/2
√
T ), where

Γ measures the connectivity of the network [22]. Specifically,
in gossip, the network topology is parameterized by its gossip
matrix A [40], a weighted adjacency matrix of the learner
network. The parameter Γ is the inverse of A’s spectral gap,
which equals 1

1−λ2(A) , where λ2(A) denotes the second largest
eigenvalue of A. Values of Γ for n-node cycle, grid, and clique
networks are presented in Table IV [22]. The communication
cost of gossip is linear in the network’s edge number E and
learning timeT . Note thatE = O(n) for cycle and grid networks
and E = O(n2) for the clique network. The regret bounds and
communication complexity of gossip in Table III then follow.
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D-BOCG reduces gossip’s communication cost by a factor of
O(
√
T ) but increases the regret by a factor of O(T 1/4).

DB-TDOCO’s regret bounds and communication complexity
are established in Corollaries 3 and 4. When using parameters in
(7), DB-TDOCO’s performance is independent of the network
topology. With parameters in (8), DB-TDOCO’s performance
depends on the network’s diameter D. Note that D = O(n)
for the cycle network, D = O(√n) for the grid network, and
D = O(1) for the clique network. The regret bounds and com-
munication complexity of DB-TDOCO in this case then follow
from Corollary 4.

Table III shows that both variants of DB-TDOCO require
lower communication cost than gossip. DB-TDOCO with pa-
rameters in (7) reduces the communication cost proportionally
to the network’s edge number. With parameters from (8), DB-
TDOCO reduces the communication cost by a factor ofO(E·Dn ),
where n is the number of learners, E is the edge number of the
network, andD is the diameter of the network. Regarding regret,
DB-TDOCO with (7) matches gossip’s regret on the clique
network. In other settings, DB-TDOCO reduces gossip’s regret
by a factor of O(nα), where α ranges from 0.5 to 2. Compared
to D-BOCG, DB-TDOCO reduces its regret by a factor ranging
from O(T 1/4) to O(n2 T 1/4), with the communication cost
enlarged by a factor of O(

√
T/nα) for 0.5 ≤ α ≤ 2.

B. DOCO for the Stochastic Setting

The DOCO algorithms in the stochastic setting are not af-
fected by the networks’ topologies. The regret bounds and
communication complexity of our DB2O and DMA algorithms
remain unchanged on all three networks in Fig. 6. As summa-
rized in Table III, DB2O reduces the communication complexity
of DMA by an Õ((nT )α) factor in terms of the number of
learners n and learning time T , where α = 0.5 for DB2O with
cutting-plane and α = 0.25 for DB2O with AGD. These results
demonstrate that the advantage of our DB2O algorithms is
consistent and significant regardless of the network topologies.

VII. EXPERIMENTS

In this section, we present experimental results comparing
the communication efficiency of our algorithms and the state-
of-the-art in achieving comparable classification accuracy.

A. Implementation Details

We conduct distributed online logistic regression tasks. Each
learner’s error rate at each time is evaluated on the current data.
We average all learners’ error rates across the learning time as
the algorithm’s online classification error rate2.

Data and preprocessing: We utilize two real-world datasets
from the LIBSVM repository [49]: covtype.binary (cov-
type for short) [23] andepsilon [24]. Thecovtype dataset
contains 581,012 samples with 54 features, while epsilon
is a high-dimensional dataset with 2,000 features and 500,000
samples. We preprocess each dataset by scaling all features
to [−1, 1] and each sample to unit length. We assign positive

2The code is available at https://github.com/GGBOND121382/
Communication-Efficient_Regret-Optimal_DOCO

samples to half of the learners and negative samples to the other
half in uniform size.3 For the stochastic settings, we randomly
order each learner’s dataset and reveal the tth sample to them at
each time t. The default learning time equals each learner’s data
size. In the adversarial setting, we generate the data streams
inspired by [50] as follows: 1) we divide the learning time
into three equal-length phases; 2) we reveal one sample with
its label flipped to each learner at each time during the second
phase, while revealing the original samples during the first and
third phases. With this construction, the optimal model varies in
different phases.

Baselines: We compare our algorithms with DMA [13] and
the mini-batch gossip algorithm [11].4 These baselines achieve
state-of-the-art regret loss with the currently state-of-the-art
communication cost. Additionally, we include D-BOCG [2] as a
baseline for the adversarial setting, which achieves the currently
state-of-the-art communication complexity with a suboptimal
regret bound.

Implementations: We conduct experiments on networks with
representative topologies, including the cycle network where
each learner has two neighbors and the all-connected clique
network. Based on [13], [22] and our analysis in Section V, the
evaluated algorithms achieve the best theoretical regret bounds
on the clique network with high communication cost. They
feature higher regret bounds on the loosely connected cycle
network with lower communication cost. We choose the feasible
region C as an Euclidean ball with a radius of 20. Similar to [2],
we set the stepsize parameter as cT−3/4 for D-BOCG, where c is
chosen optimally from {10−2, 10−1, . . . , 105} in each run. For
DB-TDOCO and gossip [11], we take the stepsize cT−1/2 with
the optimal c in {10−2, 10−1, . . . , 105}. For DB2O with AGD
and cutting-plane (referred to as DB2Oa and DB2Oc) and DMA,
we use the hyperparameters as specified in [13], [41], [51]. To ad-
just the communication budget of gossip, D-BOCG, and DMA,
we modify the batch size used to compute the mini-batch gra-
dients. For DB-TDOCO, we adjust the communication budget
by modifying the interval size t1 = t2 − t1 = . . . = tm − tm−1
in Algorithm 1. Similarly, for DB2Oc and DB2Oa, we tune the
communication budget by modifying the constants C1 and C2

in Theorems 4 and 5.

B. Experimental Results

DOCO for the adversarial setting: We investigate how the
error rates evolve with the communication budget on 8-node and
32-node learner networks in the adversarial setting. Fig. 7(a)–(d)
demonstrate that DB-TDOCO requires only around 5% of the
communication cost of gossip and D-BOCG to achieve a target
error rate of ≤ 0.4 on all networks and datasets. Furthermore,
on the 32-node cycle network, DB-TDOCO converges to lower
error rates than gossip and D-BOCG as the budget increases.

We further analyze the evolution of the communication cost
of the algorithms required to achieve a low target error rate

3We defer the experiments where all learners’ data are i.i.d. stochastic to
Appendix B-C in the supplementary material, available online.

4We modify gossip [11] into a mini-batch version, where the learners com-
municate and update models every τ timeslots using their averaged gradients,
and τ represents the batch size.
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Fig. 7. Online classification error rates in DOCO. The line indicates the averages, and the shaded area is where all error rates lie in across 10 runs.

Fig. 8. Communication cost to achieve the target error rates. The curves are
the minimum communication cost to achieve the error rates specified by the
bars. The target error rate is the maximum of the evaluated algorithms’ optimal
error rates for each T and network.

with respect to the learning time T . For this analysis, we utilize
the covtype dataset. In Fig. 8(a), we observe that on 8-node
networks, DB-TDOCO incurs less than 5% of the communica-
tion cost of gossip (D-BOCG) across various values of T and
network topologies. Similarly, on 32-node networks, Fig. 8(b)
illustrates that DB-TDOCO necessitates less than 1% of the
communication cost incurred by both gossip and D-BOCG.

DOCO for the stochastic setting: Fig. 7(e)–(h) illustrate that
on 8-node networks, DB2Oa and DB2Oc require only around
10% and 1% of the communication cost of DMA to converge
to close and steady error rates. On 32-node networks, DB2Oa

and DB2Oc generally need approximately 50% and 10% of the
communication cost of DMA to converge to a low error rate ≤
0.3. The advantages of DB2Oa and DB2Oc are more prominent
on 8-node networks since the learning time T is significantly
larger than the number of learners n (cf. Theorems 4 and 5).
On the 32-node cycle network and epsilon dataset, DB2Oc

produces higher error rates than DB2Oa and DMA because T is
not large enough to mitigate the impact of the high dimension d.

Consequently, we investigate the necessary communication
cost of these algorithms to achieve a low target error rate,
considering different T on various networks using covtype.
Fig. 8(c) illustrates that on 8-node networks, DB2Oa and DB2Oc

require approximately 10% and 5% of the communication cost
of DMA, respectively. On the 32-node clique network, Fig. 8(d)
shows that the communication costs of DB2Oa and DB2Oc con-
sistently remain lower than DMA. Their communication savings
peak at T = 18, 000, surpassing 80% and 97%, respectively.
However, on the 32-node cycle network, DB2Oa and DB2Oc

fail to save on communication over DMA for T ≤ 7, 200 as the
update times are not sufficient to mitigate the impact of high
dimension d and learner count n. Nevertheless, as T reaches
18,000, DB2Oa and DB2Oc achieve over 60% and 80% savings
compared to DMA.

VIII. CONCLUSION

DOCO provides effective algorithmic frameworks for learn-
ing tasks with numerous learners and streaming data. Two
significant performance bottlenecks for DOCO are regret
loss and communication complexity when implemented in
communication-constrained networks. It is challenging to simul-
taneously achieve low regret and communication complexity,
especially when the number of learners n and learning time
T are extensive. In this paper, we design novel algorithms
in typical adversarial and stochastic settings. Our algorithms
nearly achieve the minimax regret and reduce the state-of-the-
art algorithms’ communication cost by a factor of O(n2) and
Õ(
√
nT ) in adversarial and stochastic settings, respectively.

Furthermore, we prove that the communication complexity of
our algorithms is nearly optimal. Extensive experiments validate
that our proposed algorithms can achieve 90% ∼ 99% commu-
nication saving over the state-of-the-art with close accuracy in
most cases.
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